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Abstract

Named entity linking is a task, where we try to link entity mentions to the proper entities
from knowledge base like Wikipedia or Freebase. However, generally there could be more
then one entity candidate for entity mention. The task where we choose the correct entity
given the entity candidates is called entity disambiguation.
The aim of this thesis was to create entity linking and disambiguation system using dialogue.
In our work we experimented with recurrent neural networks in entity recognition part.
Furthermore, we analysed two approaches that used Freebase and Microsoft Concept Graph
for generating clarifying question in entity disambiguation part. Finally, we compared our
entity linking and disambiguation system with the current state-of-the-art methods.

Keywords Entity Recognition, Entity Disambiguation, Entity Linking, Natural Language
Processing, Neural Networks, Knowledge Base, Freebase, Dialogue

Abstrakt

Propojování jmenných entit je úloha, ve které se snaºíme propojit entity zmín¥né v textu
s jejich reprezentací ve znalostních databázích jako Wikipedia nebo Freebase. Nicmén¥, v
obecném p°ípad¥ m·ºe rozpoznané entit¥ v textu odpovídat více kandidát·. Úlohu, která
se zabývá rozpoznáním správné entity z dané mnoºiny potencionálních kandiát·, nazýváme
významové rozli²ování entit.
Cílem na²í práce bylo vytvo°it systém na vyhledávání a významové rozli²ování entit po-
mocí dialogu. V £ásti zabývající se vyhledáváním entit jsme experimentovali s rekurentními
neuronovými sít¥mi. V £ásti zabývající se významovým rozli²ováním entit jsme analyzovali
dva p°ístupy vyuºívající databázi Freebase a graf koncept· od Microsoftu k generaci otázek
slouºících k rozli²ení kandidát·. Na záv¥r jsme porovnali ná² p°istup s existujícími systémy
na rozli²ování entit.

Klí£ová slova Vyhledávání entit, Významové rozli²ování entit, Propojování entit, Zpracov-
ání p°irozeného jazyka, Neuronové sít¥, Znalostní databáze, Freebase, Dialog
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Chapter 1

Introduction

1.1 Background

Entity linking (EL) [53] is a task in natural language processing (NLP) where an entity
mention is linked to the corresponding entity in a knowledge base (KB) such as Wikipedia1,
Wikidata2, DBpedia3, Freebase4 or YAGO5. The task itself can be divided into three parts.
The �rst part is called named entity recognition (NER) [44], where the elements in a text
with the meaning of names of persons, locations, organisations, are detected. The detected
strings are called entity mentions. The second part consists of generating possible entities
from knowledge base which could be associated with the found entity mention. This process
is often referred to as entity candidate generation. In the third part, the correct entity from
candidate entities has to be linked to the detected entity mention. Since the mention is
typically ambiguous, which means that it refers to more than one entity candidate, we call
the last part named entity disambiguation (NED) [17].

For example in a sentence:

�Washington is the father of the nation�.

The entity mention would be a string �Washington�. The meaning of this mention could be

• Washington, D.C., the capital city of the USA

• the State of Washington in the USA

• George Washington, the �rst president of the USA

In this example, people can quickly tell that the ground truth is George Washington.
However, it is not that simple for a computer to automatically disambiguate between possible
entity candidates.

1
<https://www.wikipedia.org/>

2
<https://www.wikidata.org/>

3
<http://wiki.dbpedia.org/>

4
<https://developers.google.com/freebase/>

5
<https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/

yago-naga/yago/>

1

https://www.wikipedia.org/
https://www.wikidata.org/
http://wiki.dbpedia.org/
https://developers.google.com/freebase/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/


CHAPTER 1. INTRODUCTION

For the past few years, the importance of entity linking has been rising by a notable
amount. The possible reason could be that the devices using NLP are used considerably
more than they used to. Starting from the Apple's Siri in 2011, continuing to home voice
assistants like Amazon Echo or Google Home in the present.

According to [58] the possible applications of EL are information extraction and retrieval,
content analysis, knowledge base population and question answering. As we can see the usage
of EL is widespread and current technological trends are calling for improvements and new
approaches in NLP �eld. It seems like the smartphone era is coming to an end and the new
age of voice is just beginning.

1.2 Our Goal

The aim of this work is to create entity linking and disambiguation system using a dialogue.
To do so, we �rstly analyse the current state-of-the-art approaches in entity linking and
disambiguation �eld. Afterwards, we focus on the goal itself, which is the implementation
of the entity linking and disambiguation system. Finally, we compare our proposed method
based on an interaction with a user with the researched state-of-the-art methods.

1.3 Thesis Structure

In chapter 2 we give the brief overview of the current trends and the related work. In
chapter 3, we formulate our problem from the theoretical aspect. Furthermore, we describe
and explain our choice of a knowledge base, datasets and evaluation metrics. Chapter 4
explains the fundamental theoretical concepts of algorithms used in our proposed model.
Chapter 5 is devoted to the implementation of the proposed model and the experiments
performed during the process. Finally, in chapter 6 we sum up our work and discuss possible
future improvements.

2



Chapter 2

Related work

2.1 Current Trends

Concerning the NER part of EL, ER systems generally used to rely on hand-crafted features
and domain-speci�c knowledge or resources such as gazetteers [36]. However, in 2013 Mikolov
et al. [40, 41] proposed a new and more e�cient way to represent words in a continuous space
using simple neural network model. Moreover, their model automatically extracted features
from a text as authors reported that learned embeddings captured syntactic and semantic
regularities in language. For example, to �nd a word that is similar to �women� in the same
sense as a �king� is similar to �men�, we can compute

vector(X) = vector(�king�)− vector(�men�) + vector(�women�)

The result is a word closest to the X using cosine similarity, which yields vector(�queen�) [42].
Nowadays, we can observe a shift from using hand-crafted features to automatic extrac-

tion of features using neural networks. People started to use word embeddings to leverage
their systems, and also they started to experiment with all the di�erent kinds of embed-
dings. For example, character embeddings [57] are now used in most of the ER systems.
The current state-of-the-art results in NER are achieved by the combination of embeddings,
bidirectional long short-term memory networks (BLSTMs) and convolutional neural net-
works (CNNs) [11, 38].

When it comes to NED, the trend is pretty similar. There is a broad range of hand-
crafted features ranging from exact string match or textual context up to part-of-speech
(POS) tags as is described in [58]. Furthermore, it should also be mentioned that not
only features are created but also whole data structures dedicated particularly to NED.
The examples of these structures are mention-entity graph [30] and referent graph [25].
Besides introducing mention�entity graph, Ho�art et al. also developed AIDA CoNNL-
YAGO dataset in which we will be particularly interested. This dataset, which we will
be using, is based on CoNLL-2003 NER dataset and it is manually annotated with proper
entities. Another work concerning datasets is [64] where the current benchmark EL datasets
are compared and tested in depth.

Similarly to ER, in last years people are trying to move from creating handcrafted features
to end to end systems using neural networks. In the following sections, we will introduce
three articles which apply a di�erent approach to the problem of NED.

3



CHAPTER 2. RELATED WORK

2.2 Named Entity Disambiguation Approaches

2.2.1 Entity Linking meets Word Sense Disambiguation: a Uni�ed Ap-

proach

Entity Linking and Word Sense Disambiguation (WSD) are both tasks that aim to solve
ambiguity of the language. Even though these tasks are similar in some ways, there are
some signi�cant di�erences. The di�erence will be best seen in an example. Given the
sentence

�Thomas and Mario are striker playing in Munich�

In this example, the entity linking problem would be to link mentions �Thomas� and �Mario�
to the corresponding entities in a knowledge base. In this case, Thomas Müller and Mario
Gómez are both football players of Bayern Munich. The word sense disambiguation problem
can be seen in words �striker� and �playing�, where the correct sense of the words had to be
selected from the dictionary. Thus, the main di�erence is that EL uses knowledge base while
WSD use dictionary and that in EL the mention could be partial while in the WSD, there
is a perfect match between word form and word sense. However, other than that, tasks are
pretty similar as they both focus on disambiguation of the text.

This article [43] presents an innovative approach to the EL and WSD because they
tackle both problems jointly instead of separately as rest of community does. They present
a hypothesis that the knowledge used in WSD is useful for EL and vice versa. They propose
Babel�y, which is uni�ed graph-approach to both WSD and EL. With this algorithm, they
reached 82.1% accuracy on AIDA CoNLL-YAGO dataset 3.5.2.

The base of their algorithm is BabelNet which is a directed multigraph automatically
constructed from Wikipedia and Wordnet. In the �rst step of the algorithm, they assign set
of related vertices to each vertex in a semantic network. This is done �rstly by giving higher
weights to the edges in more densely connected areas. Afterwards given the starting vertex
v they perform random walks with a restart to return set of related vertices for v, where
conditional probabilities are based on previously mentioned edge weights.

Given a text, they extract all the linkable fragments from it. For each of linkable fragment,
they list the possible meanings based on the previous step. Now, Given both identi�ed
fragments and related vertices, they build directed graph of semantic interpretations as can
be seen in �gure 2.1. Afterwards, the densest subgraph heuristic is applied, thanks to which
the subgraph of most coherent semantic interpretations is what remains. Each possible
candidate meaning in the densest subgraph is given a score equal to a normalized weighted
degree. The �nal step is to link each identi�ed fragment to the highest ranked candidate
meaning if its score exceeds a certain �xed threshold.

Figure 2.1: Directed graph of semantic interpretations [43]

4



2.2. NAMED ENTITY DISAMBIGUATION APPROACHES

2.2.2 Joint Learning of the Embedding of Words and Entities for Named

Entity Disambiguation

In this article [69] the neural network approach is selected to disambiguate entities. Proposed
method jointly maps word and entities into the same continuous vector space, and it is an
extension of the skip-gram model [40].

The proposed model consists of three parts:

• 1) the original skip-gram model which predicts neighbouring words around the given
target word

• 2) the KB graph model which estimates neighbouring entities given the target entity
in the link graph of the KB

• 3) the anchor context model that learns to predict neighbouring words given the target
entity using anchors and their context words in the KB

The idea is to optimize all three models simultaneously which results in the desired
mapping of words and entities into one continuous space. These embeddings are later used
in candidate ranking, but �rstly a method for candidate generation has to be chosen. Authors
use two public entity candidate datasets created particularly for EL on AIDA CoNLL-YAGO
dataset and compare their results afterwards. The �rst one is by Pershina et al. [50] and
the second one by Ho�art et al. [30].

As was said earlier, learned embeddings are used as the primary feature in candidate
ranking. To be more precise two features are derived from proposed embeddings. The �rst
one, the textual context similarity, is a cosine similarity between an entity and words in a
document. The second one, coherence, is measured based on the relatedness between the
target entity and other entities in a document. With these two features and several others
including string similarity, entity prior P (e), prior probability P (e|m) and the number of
entity candidates, they use gradient boosted decision trees [24] and according to our research,
their approach is current state-of-the-art with 93.1% micro and 92.6% macro accuracy on
AIDA CoNLL-YAGO.

2.2.3 Did you mean A or B? Supporting Clari�cation Dialog for Entity

Disambiguation

So far we have introduced two articles on NED. One with a graph-based approach and the
second one was using neural networks. The last article [14] that we will cover in this section
is tackling NED from the dialogue perspective which is what we were are precisely looking
for. It proposes and discusses the following three ways to construct clari�cation question.

• Type-based This is the most simplistic approach. It supposes that given a word
we have its possible entity types. For example, given a word �orange�, let's say that
the types would be a �colour� and a �fruit�. The question would be asking whether
the �orange� was meant as a �fruit� or as a �colour�. However, the most signi�cant
problem with this approach is that it cannot distinguish between the entities of the
same type. Moreover, it highly depends on the availability of human-readable and
descriptive labels for entity types. Therefore, other types of questions are introduced.

5



CHAPTER 2. RELATED WORK

• Example-based In cases where the entity class labels are not available or useful the
next most straightforward way to clarify the meaning is using other example entities
that are similar to the possible meanings. Let's suppose that we are trying to dis-
ambiguate mention �orange� again. In this approach instead of asking for types, the
question would be: �Do you mean `orange' like banana and apple, or `orange' like yel-
low?�. To ask such question, we have to choose how many and which examples to
provide. Authors state that just showing the alphabetically �rst few members or a
random subset of an entity type is not su�cient, especially in cases where a list of type
members may run to the thousands.

They propose to use word2vec [40] continuous space for choosing examples of the type.
One approach is to select the closest vector measured in cosine distance. The second
proposed approach is to compute the cosine distance between all term pairs in a type
and then for each member compute the sum of the distance to all other terms. Those
with the smallest total sum are in a sense the �median� of the terms of that entity
type. We can think of this as �nding stereotypical terms from each type, which re�ects
our intuition of what would make good example terms for a clarifying question. Terms
that have multiple common meanings besides the one under consideration end up with
a larger distance and thus are more �peripheral�.

Type Central Peripheral
Color mauve, lilac, pink, taupe coal, sage, bordeaux, co�ee
Fruit apricots, cheries, plums, mellon mulberry, berry, mandarin, orange

Table 2.1: Examples of central and peripheral representatives given a type [14]

• Usage-based The last proposed method shows language usage of a term in context.
For example: �Do you mean `orange' as in `I would like an orange juice.' or `I love the
4G speed Orange now o�ers.'?� We can �nd the context by analysing a large corpus
where the entities of the target type occur many times. We look at these occurrences
to identify contexts that are fairly speci�c to the type in question. This results in a
set of patterns where a type has a high probability to occur. For example, for the type
colour: `black / *'; `* in colour.'; `red, * and blue'; `shades of * and'; `* and purple';

Patterns are scored as to the speci�city of the context to the given type, and in the
most discriminating patterns, the * is replaced with the word of interest which in our
case is �orange�. We then query a corpus for occurrences of such patterns. If we get a
match, the sentence in which it appears is selected. Otherwise, the process is repeated
with the next best pattern and so forth until a match is found. Afterwards, only the
clause of interest is selected from the founded sentence and only this part is used in
a question. Hence, selected sentence: �Orange and purple crayon streaks rainbowed
across his briefcase surface.� results in the question: �Do you mean `orange' like `orange
and purple crayon streaks'?�
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Chapter 3

Problem Formulation

3.1 Problem Statement

As described in section 1.1, entity linking is a task where we �rst �nd named entity mentions
in given text, then generate entity candidates from selected KB and afterwards link founded
entity mention to the appropriate entity.

NER can be formulated as sequence labelling problem where we label each word in a sen-
tence by speci�c tag from given set of labels. NED can be taken as a ranking problem where
we order entity candidates and afterwards, we choose the highest ranked (most probable)
entity candidate.

In practice, when dealing with NED, researchers expect a pre-tagged input, or they
use existing external annotators so that a full focus is put on NED. Typically, Stanford
CoreNLP1 [39] is widely used in NLP community. However, in our work, we experiment
with neural networks in NER part as they had reached state-of-the-art results which we
discussed in chapter 2.

Concerning candidate generation, we will use label-lookup2 which is used in Alquist [51]
and YodaQA [4]. Nonetheless, two public entity candidate dataset for AIDA CoNNL-YAGO
provided by Ho�art et al. [30] respectively Pershina et al. [50] should be taken into account.
However, both of these provides only Wikipedia mapping. Additionally, they are created
particularly for EL on AIDA CoNLL-YAGO while label-lookup can be used more universally.

In the NED part, we experiment with Freebase and Microsoft Concept Graph3 to generate
questions so that we can disambiguate using dialogue. Our approach will be more thoroughly
discussed in the section devoted to implementation and experiments 5. However, before the
implementation, several things should be clari�ed �rst. In this section, we will specify the
choices of the KB, datasets and evaluation metrics.

1
<https://stanfordnlp.github.io/CoreNLP/>

2
<https://github.com/brmson/label-lookup>

3
<https://concept.research.microsoft.com/>
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CHAPTER 3. PROBLEM FORMULATION

3.2 Knowledge Bases

In general, a knowledge base is storage of information. In our case, a knowledge base can be
viewed as a database of entities, information about the entities and mutual relations between
them. Since a knowledge base is needed in every EL pipeline and each of KB is di�erent in
some aspects, the choice for us as designers of EL system is the important one.

In this section, we will primarily focus on Freebase because it is the KB we will be using.
Then we will describe Wikipedia from which many features are derived and �nally we will
give a brief overview of other known knowledge bases.

3.2.1 Freebase

Freebase [6] is a graph based database of general human knowledge. From a historical
point, Freebase was launched in 2007 by Metaweb Technologies company. The company
was acquired by Google in 2010. In December 2014, Google announced that it would shut
down Freebase in mid-2015 and help with the move of the data from Freebase to Wikidata.
Freebase was o�cially shut down on 2 May 2016 [67]. Nowadays, only RDF dump of Freebase
is what is left. Additionally, Google Knowledge Graph and Wikidata are meant to serve as
a substitution for Freebase.

The data in Freebase were collaboratively created, structured and maintained. What
is meant by that, is that Freebase was publicly accessible through an HTTP-based graph-
query API and public users could work with the database as they wanted to. Information
in Freebase was collected from multiple sources. The main source was Wikipedia, but there
were a lot of other sources [22] including the following:

• Wikimedia Commons

• Open Library Project

• Stanford University Library

• TVRage

• MusicBrainz

• National Register of Historic Places

• OurAirports

• ITIS - Taxonomy of plants and animals,

• World of Spectrum

• WordNet

Thanks to the broad coverage from the multiple sources, Freebase was and still is one of
the largest currently existing knowledge bases, covering the most of world existing entities,
even though it was shut down. Since the last Freebase database dump included over 42
million objects and 1,9 billion relationships and it is free to use, we will be using FB as
our KB. In the following part, we will describe what RDF is because Freebase is now only
available as RDF dump. Afterwards, we will also look on the way of querying RDF data.
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3.2. KNOWLEDGE BASES

3.2.2 Wikipedia

Wikipedia is a free multilingual encyclopedia launched on January 15, 2001. Wikipedia
founders, Jimmy Wales and Larry Sanger, aimed to create the most comprehensive, free,
widely-available collection of human knowledge. The goal seems to be accomplished pretty
well as it is currently the 5th most popular website according to Alexa rank [1], and it
contains over 5.6 million articles in English [16]. These statistics make Wikipedia not only
the most popular Internet encyclopedia in the world but also the largest one.

Similarly to Freebase, the content of Wikipedia exists mainly thanks to the collaborative
e�ort of the community around the world. The primary entry in Wikipedia is an article,
which de�nes and describes an entity or a topic. Each article in Wikipedia is uniquely
referenced by an identi�er. This URL identi�ers are often used for mappings, which can be
seen for example in section 3.5.2. The article itself serves as valuable entity linking feature.
For example, mention, context or entity candidate embeddings can be created from a text
which is describing entity [62]. Some of other EL features provided by Wikipedia are article
categories, redirect pages, disambiguation pages, and hyperlinks in Wikipedia articles [58].

3.2.3 DBPedia

Even though Wikipedia is comprehensive and popular among people, its structure is semi-
structured, therefore not entirely machine-understandable. This issue is tackled by DBpe-
dia [2, 5, 37] project which is a collaboration of the Free University Berlin, the University
of Leipzig and OpenLink Software. The project aims to create a structured knowledge base
from Wikipedia which would be freely available on the Web. To be more speci�c, DBpedia
tries to extract structured information which is embedded in the articles and map it to a
single ontology. The most of structured information on Wikipedia is in the form of infoboxes.
An infobox is a table which is located in the top right corner of the Wikipedia article and
lists article's most relevant facts. Extracted data are stored in the RDF triplets and can be
queried with SPARQL. The possibility to query structured data is the main advantage in
comparisons with the Wikipedia, where only the full-text searches can be performed.

3.2.4 Wikidata

Wikidata [65] is a collaborative knowledge base launched by Wikimedia foundation in 2012.
Its goal is to store the information in a structured way to help other projects including
Wikipedia or the question answering systems.

Since Freebase authors thought of their project as "Wikipedia for structured data" and
with quickly growing Wikidata community which was around 6000 active contributors in
mid-2015, Google decided to down Freebase in mid-2015. Freebase authors believed that
supporting Wikidata was the best decision to support the development of an open, collabo-
rative knowledge base. Wikidata became Freebase successor, and the mapping from Freebase
to Wikidata was created [48]. Nevertheless, not all information was migrated because Wiki-
data community was very eager to have references for their statements, which Freebase was
often lacking. Additionally, the licences under which the datasets were published di�ered,
which reduced the number of possible mappings too.

9



CHAPTER 3. PROBLEM FORMULATION

3.2.5 YAGO

YAGO [30] � Yet Another Great Ontology is a huge semantic knowledge base, derived from
Wikipedia WordNet and GeoNames. Researchers from the Max Planck Institute for Com-
puter Science in Saarbrücken developed YAGO as well as our dataset. Currently, YAGO
contains more than 10 million entities, and it also includes more than 120 million facts
about these entities. The interesting point is that the fact correctness of YAGO has been
manually evaluated, proving a con�rmed accuracy of 95 %

3.3 RDF

RDF [33] which stands for Resource Description Framework is a standardised framework for
representing information in the Web. It has been recommended as a standard by The World
Wide Web Consortium (W3C) which is the leading international standards organisation for
the World Wide Web. Data in RDF are stored in the form of triplets. Each triple consists of
a subject, a predicate and an object. Such triples are called statements. A simple statement
can be visualised by a node and directed-arc diagram as can be seen in 3.1, in which each
triple is represented as a node-arc-node link.

Figure 3.1: RDF triple diagram

A set of statements is called an RDF graph. The nodes of an RDF graph are its subjects
and objects. Oriented edges are predicates which denotes a relationship between nodes and
they point from the subject to the object of the predicate. Everything except blank nodes
and literals, which are atomic values from which property cannot lead, is unambiguously
identi�ed with internationalised resource identi�er (IRI).

RDF statements using full IRIs are lengthy and unclear. XML namespaces which point
to the speci�c vocabularies of the local property names are used to help readability of RDF
statements. They are de�ned at the beginning of the document where we de�ne a mapping
between pre�x and a namespace IRI. Thanks to the XML namespaces, individual IRIs can be
afterwards written in the form of pre�x:localname, which makes RDF statements shorter and
more readable. An example is shown in �gure 3.2 Moreover, namespaces have to be uniquely
identi�ed with IRIs too. Therefore, same local resource name with di�erent namespace
means di�erent resource in the whole graph while with same namespace it points globally to
the same resource.
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3.4 SPARQL

Now that we have a framework for storing information, we would like to have a way to
query the data. W3C suggests standardised language for querying data in RDF format
called SPARQL [52] which is a recursive acronym for SPARQL Protocol and RDF Query
Language.

SPARQL is a graph-matching query language. Therefore querying, given data source D
and query q, is essentially just the process of mapping patterns which occur in q against D.
The results of such query are the values obtained from this matching [49]. The syntax of
SPARQL is very similar to the SQL syntax which can be seen in the following example.

DATA:

@prefix foaf: <http://examplens.com/foaf/2018/> .

_:a foaf:name "John"@EN.

_:a foaf:name "Jan"@CZ.

_:a foaf:mbox <mailto:john@sparqlexample.com> .

QUERY:

PREFIX foaf: <http://examplens.com/foaf/2018/>

SELECT ?name ?mbox

WHERE {

?x foaf:name ?name .

?x foaf:mbox ?mbox .

FILTER ( lang(?name) = "EN" )

}

RESULT:

{

"head": {"vars": [ "name" , "mbox" ]} ,

"results": {

"bindings": [

{

"name": { "type": "literal" , "value": "John"@EN },

"mbox": { "type": "literal" , "value": "<mailto:john@sparqlexample.com>" }

}

]

}

}

Figure 3.2: SPARQL example
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3.5 Datasets

In our work, We used two English datasets, CoNLL-2003 and AIDA CoNLL-YAGO. Here,
we will brie�y describe both of them.

3.5.1 CoNLL-2003 Dataset

Originally ConLL-2003 is a dataset provided for participants of the CoNLL-2003 shared
task [63] which concerned language-independent named entity recognition. However, nowa-
days it serves as a standard benchmark dataset for NER. It consists of Reuters articles
between August 1996 and Augst 1997. The dataset is split into three �les, a training �le,
a development �le and a testing one. The learning methods should be training with the
training part, while the hyperparameters should be learned with the development one. The
testing part is used for evaluation.

A data format is consistent as each �le consists of lines with four �elds: the word, its
part-of-speech tag, its chunk tag and its named entity tag. Individual sentences are separated
by empty lines. Out of three given word labels, we will be concerned only about the last
one, named entity tag. Named entity tag is formed of an IOB1 tag and an additional tag
signalising whether an entity has a meaning of person (PER), organisation (ORG), location
(LOC) or miscellaneous name (MISC). Inside-outside-beginning (IOB) format is a standard
labelling scheme for named entity chunks. In IOB1, 'I' is a token inside a chunk, 'O' is
a token outside a chunk and 'B' is the beginning of chunk immediately following another
chunk of the same Named Entity. We will also mention IOB2 format because it is used in
the second dataset. IOB2 is same as IOB1, except that a 'B' tag is given for every token,
which exists at the beginning of the chunk [34].

3.5.2 AIDA CoNLL-YAGO Dataset

As can be seen from the name, AIDA CoNLL-YAGO [30] named entity linking dataset
is based on the original CoNLL-2003 named entity recognition dataset. It was created
by Ho�art et al. because standard benchmark dataset for EL was missing. It contains
similar Reuters articles and even though dataset is a single �le it still preserves split into
the three parts thanks to the numbering of documents. Each document starts with a line:
"-DOCSTART- (<docid>)". Similarly to the CoNNL-2003 dataset, each line contains one
word and sentences are separated by empty line too. The format of a line is following.

• column 1 is the token

• column 2 IOB2 tag, blank if O

• column 3 is the full mention used to �nd entity candidates

• column 4 is the corresponding YAGO2 entity if there is one or �NME�

• column 5 is the corresponding Wikipedia URL of the entity

• column 6 is the corresponding Wikipedia ID of the entity

• column 7 is the corresponding Freebase MID if there is one

12



3.6. EVALUATION METRICS

Figure 3.3: CoNLL-2003 example sentece

Figure 3.4: AIDA CoNLL-YAGO example sentece

3.6 Evaluation Metrics

For the evaluation of our task, we use the following standard metrics where TP is the number
of predicted entities that are in fact entities, FP is the number of predicted entities that
should not be labelled as entities, TN is the number of words that are not predicted as
entities and in fact are not entities and �nally FN is the number of words which should be
labelled as entities but are not.

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 = 2 · Precision·Recall
Precision+Recall

• Accuracy = TP+TN
TP+FP+TN+FN

It should be noted that there are several options on what to take as entity match. We
could either take in account only correct tag and disregard a span of the entity or vice versa,
or we can consider both span and tag of the entity. For the comparability with current
results in NER, we will use the exact match where we consider both factors.

In NED part, the manual tagging is needed to evaluate the performance of our model.
Due to the limited time, we decided not to manually tag the whole dataset but rather
estimate our performance using smaller sample dataset. In this part, we used accuracy as
an evaluation metric since it is used for evaluation of the methods with which we would like
to compare our method.
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Chapter 4

Theorethical Analysis

In this section, we will cover neural networks [26] (NN), because we will utilize them in our
approach. Furthermore, most of the state-of-the-art results in both NER and NED are using
neural networks too. We will describe main principles of NN, and we will introduce basic
types of NN with their usage in NLP.

4.1 Neural Networks

One of the main things that people are trying to understand is the way how human brain
works. This persistent e�ort to understand how we think was one of the reasons why neural
networks were developed. A neural network is a machine learning algorithm inspired by a
human brain. It takes a basic building block of the brain, biological neuron, and models it
mathematically to an arti�cial neuron. A comparison of a biological neuron and an arti�cial
neuron can be seen in �gures 4.1 and 4.2.

Figure 4.1: Biological neuron [8]
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CHAPTER 4. THEORETHICAL ANALYSIS

Figure 4.2: Arti�cial neuron [12]

4.1.1 Perceptron

Perceptron [54] is equivalent to a single neuron. Similarly to a biological neuron, an arti�cial
perceptron neuron either �res a signal or not. Thus, it can be viewed as a binary classi�er.
The weighted sum of inputs is taken as an input to the activation function. In case of the
perceptron, the activation function is called step function, and it has the following form:

f(x) =

{
1 x ≥ 0
0 x < 0

However, sometimes we would like a neuron to activate only if the input sum is greater
than a certain threshold, not just to be limited to a zero threshold. That is why a bias term
b is introduced as another input to the perceptron. For mathematical convenience, we often
add input x0 = 1 and weight w0 = b instead of bias term b so that input to the activation
function can be taken as a dot product of weight vector w with input vector x, see the
following equation.

wTx+ b = w1x1 + w2x2 + · · ·+ wnxn + b = w01 + w1x1 + · · ·+ wnxn = w̃T x̃

As was mentioned earlier, perceptron can be viewed as a binary classi�er. Hence, it can
be interpreted as a yes-no answer to a question. Some types of more di�cult questions can be
answered by layering the perceptrons into a network which is called multilayer perceptron [55]
(MLP). However, we cannot model everything with just perceptrons.

In order to have more complex models that are capable of solving complicated tasks, we
would like to measure the strength of a neuron activation, not just to be limited strictly to
0 and 1. Therefore, new non-linear functions 4.3 are introduced. In our thesis, we will work
with the following non-linear functions.

Sigmoid

σ(x) =
ex

1 + ex

Hyperbolic tangent
tanh(x) = 2 · σ(2x)− 1
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Recti�ed Linear Unit (ReLU)

relu(x) =

{
x x ≥ 0
0 x < 0

Softmax

softmax(x)j =
exj∑K
k=1 e

x
k

for j ∈ {1, . . . ,K}

Figure 4.3: Activation functions
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4.1.2 Fully Connected Neural Networks

A basic neural network has a form of several stacked layers of neurons. The �rst layer is
called input layer, the last one is called output layer, and the layers in between are referred
to as hidden layers. A simple architecture is visualized in �gure 4.4.

Figure 4.4: Fully connected neural network [47]

As we can see, each neuron in one layer is connected to all neurons in the following layer.
This is the reason why we refer to this kind of network as a fully connected neural network.
Also, the neurons in one layer are only connected to the following layers, and there is no
connection backwards, this type of NN is called feedforward NN.

In the previous section, we showed that input of non-linear function in case of a single
neuron could be written conveniently as a dot product. Generally, we can write the output
of the neural networks only in terms of matrices, vectors. Given the following de�nition

f(z) = (f(z1), f(z2), . . . , f(zn))

the output of our network in example could be written like:

a(3) = f(θ(2)a(2)) = f(θ(2)[1, f(θ(1)a(1))])

Additionally, an important fact that the activation function has to be non-linear can be
clearly seen in this written form. If the activation function were linear, the whole output
would be just result of nested matrix multiplications. However, thanks to the linearity we
would be able to rewrite multi-layer network to single-layer one with the same results.
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4.1.3 Training

So far we have just explained how to calculate the output of neural networks. In this section,
we focus on their training. The desired state is that given the input, the correct output neuron
would activate. We can in�uence this behaviour by changing the weights in each layer. The
whole training is in fact just a process of learning the appropriate weight matrices. This
can be formulated as an optimization problem as we are trying to minimize an objective
function, sometimes also called cost function, which measures how much the current output
is di�erent from the desired one. Ideally, we would like to have equality between network
output and desired output. Therefore, we are minimizing an objective function, and ideal
state is when the value is 0. The most known objectives functions are a mean square error,
information divergence, categorical cross entropy.

4.1.3.1 Gradient Descent

The most widely used algorithm for training neural networks is gradient descent. Gradient
descent is a �rst order iterative algorithm for �nding local minima. An iteration is calculated
as

xk+1 = xk − λk∇f(xk)

Where ∇f(xk) is the gradient which determines the direction of the next step and λk is a
learning rate which determines the size of the step in the direction of the negative gradient.

Gradient descent is a representative of descent methods where objective function mono-
tonically decreases. Therefore it holds that

f(xk+1) < f(xk)

The main advantage is that this algorithm always converges to the local minima because
we always have step in a descent direction which can be observed from

f ′(xk)(−∇f(xk)) = −f ′(xk)f
′(xk)

T < 0

On the other hand, it can handle only di�erentiable functions which is the reason why
we require activation functions to be di�erentiable. Moreover, it often converges relatively
slowly.

When it comes to the speed of the convergence, the natural question is why not to use
second-order methods for �nding local minima. However, these methods require a calculation
or at least approximation of a Hessian matrix and also a matrix inverse is needed. These
calculations are computationally expensive and also the memory requirements for storing
Hessian are O(N2). Thus, the second-order methods are unfeasible for large neural networks
with many parameters. Other possibilities for training are, for example, EM algorithm or
genetic algorithms. However, gradient descent is still a go-to algorithm when it comes to
the training mainly because of backpropagation algorithm which will be described in the
following section.
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4.1.3.2 Backpropagation

Backpropagation [27] is an algorithm which e�ciently computes the gradient of the given
objective function with respect to all weights and biases. However, instead of a naive ap-
proach of calculating every partial derivative separately, it uses previously calculated results
to compute the new ones. In fact, it is just a repetitive use of the chain rule in derivation.
Intuitively, given an objective function, we know how we want to change the �nal output
to minimize the cost. Now, given how we want to change the output of the �nal layer, we
look at how the input of the previous layer in�uence this one. This idea is used repetitively
starting from the end until we get to the �rst layer. That is where the name of the algorithm
came from.

Figure 4.5: Backpropagation diagram [23]

4.1.3.3 Stochastic Gradient Descent

Despite having an e�cient algorithm for calculating gradient, we have to compute gradients
for all the training examples to make one weight update. Thus, the more training examples,
the more time it takes to make one update of the weights in the descending direction.
However, to be able to model di�cult problems require we generally require large training
sets which makes a standard gradient descent inapplicable in practice.

This problem is tackled by a modi�cation of gradient descent called stochastic gradient
descent [7]. The main idea behind the stochastic gradient descent is to take a smaller portion
of the data to estimate the gradient instead of calculating the gradient over all training
examples. This estimate cannot guarantee that we will always make descent step, but it
generally converges.

4.1.3.4 Vanishing and Exploding Gradients

Calculating a gradient is not the only challenge that we face during the training of neural
networks. The other big problem related to gradient is a vanishing gradient [28]. It is a
problem where gradients with respect to weights get too small to e�ect weight update at all.
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The reason why it occurs is that while propagating error through n layers, multiplication
with a derivative of the activation function f ′(zi) is applied n times. However, traditional
activation functions such as the sigmoid or the hyperbolic tangent have gradients in the range
(0, 0.25) and (0,1) respectively. Hence, a repetitive multiplication with a number smaller
than 1 has the e�ect of exponential decrease with respect to the number of layers n while
the front layers train very slowly.

One possible solution for the vanishing gradient is ReLU activation function. The deriva-
tive of ReLU for positive inputs is always one. Therefore, the backpropagated error does not
change while multiplying by the derivative. Other solutions GRUs and LSTMs which will
be described later.

In contrast to vanishing gradient, there is also an exploding gradient [45]. Here, the
gradient with respect to weights get too large which results in very large updates to neural
network model weights during training. This makes a model unstable and unable to learn
from the training data as a large update overshoot a downhill step. In the worst case, a value
of the weight update approaches in�nity which makes further learning impossible. However,
in this case, there is a relatively simple solution which is called gradient clipping. The main
idea is to limit gradient values so that they cannot exceed a certain threshold.

4.1.3.5 Over�tting

The last problem concerning training which we will examine is over�tting [9]. Over�tting
occurs when the model does not generalize well enough and does not perform well in practice,
despite �tting the training data well. This is a natural tendency caused by way of the neural
network training.

Over�tting is usually detected by having a validation set. Usually, if the classi�cation
error and loss in validation set raises while it drops in the testing set, the over�tting has
occurred. This directly leads us to the technique called early stopping [71]. The idea is to
evaluate the network performance on the validation set and save the copy of the model only
if it outperforms the previous best one.

Another technique which is widely used to reduce over�tting is dropout [60]. This simple
technique randomly drops units which speed up the training while making the model more
robust. There are plenty other techniques such as regularization, cross-validation or ensem-
bling [35], which are used to reduce the over�tting, yet the simple idea as dropout generally
reduces over�tting well.

4.1.4 Convolutional Neural Networks

Convolutional neural networks [15] (CNNs) are networks that take into account the spatial
structure of the input. Unlike in fully connected neural network, we connect only several
input neurons to the neuron in the following layer. Moreover, we do not have separate weights
for every single neuron, but we share weights for the same �lter. Furthermore, we also apply
pooling layers, which reduce the dimension of input while it preserves the most relevant
information. All these ideas rapidly reduce the number of parameters we have to learn in
contrast to fully connected networks. Hence, we are enabled to build deeper networks.
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A convolutional �lter is easily interpretable for images where we can think of it as a
sliding window function over the matrix with pixel values which represents an image. In
NLP our matrix is going to be a sentence represented by word embeddings where each word
is one row.

Figure 4.6: Convolutional neural network in NLP [72]

CNNs are in nature more suitable for computer vision because the concept of the local
detection of some feature in the image seems to be a logical idea. Local �lters, shared weights
and pooling helps to capture the local information but does not care that much about where
something appeared. Thus, the use of CNN is not that straightforward when it comes to
NLP, where we typically care about the word order [31] since just a change in position of a
word in the sentence can change the meaning. However, words close to each other are often
semantically related, but it should be noted that it is not always the case.

In NLP CNNs are typically used in classi�cations tasks [32], such as sentiment analysis[21]
or topic categorization [66] because here we rather focus on the content than on order. On
the contrary, in the tasks where we put a great emphasis on the word order like sequence
tagging, part-of-speech (PoS) tagging or entity recognition, pure CNN architectures are gen-
erally not used. Instead of that, CNNs are utilized as a part of the architectures in such
problems, and they serve as a feature extractor [56, 11].
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4.1.5 Recurent Neural Networks

Traditional language models [61] for sequential data are based on predicting the current word
on n previous words. This assumption that current word relies only on a window of previous
words instead of all previous words is incorrect. However, this simpli�cation was working
pretty well in practice. On the other hand, the memory requirements grow very big with the
number of previous words that a current prediction depends on.

Recurrent neural networks (RNNs) were introduced as a model with a theoretical capa-
bility of taking all previous information in the account. RNN are a natural architecture of
neural networks for NLP problems since text or speech have sequential nature. Simple RNN
model is depicted in �gure 4.7. We can see that in RNN output does not depend only on
current input but also on the previous outputs, whereas in previously mentioned fully con-
nected and convolutional networks, output relies solely on current input. An important fact
is that weights are shared through di�erent time steps. Moreover, the memory requirements
do not grow with the number of previous words but only depends on the number of words
we are trying to predict.

Figure 4.7: Recurrent neural network diagram [18]

The following equations hold for calculation of the hidden state and the output.

ht = tanh(Uxt + V ht−1)

ot = softmax(Wht)

The main problem of RNNs is a struggle to learn long-term dependencies [46]. The
problem is vanishing gradient again. This is because unfolded RNN is in fact just a traditional
fully connected network as can be seen in �gure 4.7. Hence, the problem of backpropagating
the error to the layers further from the end is persisting in RNNs too. That is the reason
why RNN architectures like GRUs and LSTMs, which are specially designed to persist the
long-term dependencies, were introduced.
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4.1.5.1 Gated Recurrent Units

Firstly we will introduce Gated Recurrent Units (GRUs) which are a simpli�cation of LSTMs.
They are a relatively new idea as they were introduced in 2014 by Chun et al [13]. In
contrast to simple RNNs where a unit contains only the hyperbolic tangent nonlinearity,
GRUs introduce two additional gates that in�uence how a neuron deals with current input
and previous information. See �gure 4.8.

Figure 4.8: Gated recurrent unit [20]

The two gates are called update gate and reset gate, and they have following almost
similar equations.

zt = σ(W zxt + U zht−1)

rt = σ(W rxt + U rht−1)

The gates di�er in weight matrices, but more importantly, they di�er in usage. Their
usage can be explained because the following equations for the calculation of new memory
content and �nal memory content holds.

h̃t = σ(Wxt + r ◦ Uht−1)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t

Reset gate is used to control how much past information should be forgotten. Intuitively
if all values in r get close to zero, we ignore the information from the previous hidden state
because it would be irrelevant in the future. Update gate has a function of determining how
much of the past information needs to be passed to the output. We can see that if all values
in z get close to one, we copy the information from the previous step and there is no problem
with vanishing gradient. Furthermore, it can be easily seen that GRUs are a general model
of RNNs. That is because if r is 1 and z is 0 then the ht equation for GRUs simpli�es to the
ht equation for RNNs.
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4.1.5.2 LSTM

Long short-term memory [29] (LSTMs) networks are an even more complex recurrent model
than GRUs. The surprising fact is that they were introduced already in 1997 which is much
earlier then GRUs which is a simpli�cation of LSTMs.

LSTMs introduce three gates instead of two which were introduced in GRUs. We refer to
these gates as input, forget and output gate. Moreover, they also have one additional state
which is called a cell state. Following equations holds for the LSTMs.

it = σ(W ixt + U iht−1)

ft = σ(W fxt + Ufht−1)

ot = σ(W oxt + Uoht−1)

c̃t = tanh(W cxt + U cht−1)

ct = ft◦ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

Forget gate controls how much the network cares about the previous results. Input gate
tells us how much we should care about the current state. This is a stronger mechanism
than update gate in GRUs as we have two separate mechanisms to control the memory cell
instead of a single update gate.

Another di�erence between LSTMs and GRUs is that LSTMs have additional cell state.
The reason is that LSTMs also control how much information they want to expose to the
output. In GRUs the output is equal to the �nal memory state, whereas in LSTMs the
output is controlled by the output gate which decides what information is relevant for the
current state.

If we continue with the comparison of GRUs with LSTMs from the performance aspect,
there is no clear winner. Researchers have tried both models on various problems. Some-
times GRUs outperform LSTMs, but sometimes it is another way around. Generally, the
performance is pretty similar while GRUs have the advantage of the simpler model which
often results in quicker training. On the other side, LSTMs are more �exible and have more
modelling power with more gates. Furthermore, they are more thoroughly explored as GRUs
are relatively new.

Figure 4.9: Long short-term memory unit [19]
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Chapter 5

Implementation and Experiments

In this section, we go through the implementation of the proposed approach. Furthermore,
we describe the experiments which had been done, as we move along the system architecture.

5.1 Named Entity Recognition

As we discussed in section 3.1, we decided to experiment with neural networks in NER. RNNs
had reached state-of-the-art results in NER, and their popularity in NLP task is growing.
Therefore, we tried to implement own recurrent neural approach in order to get a better
understanding of the power of RNNs, instead of blindly using existing tagger.

We used Python3 programming language throughout the whole work as it is one of the
most popular languages for machine learning. Python provides us powerful libraries for
neural networks, and it can also handle SPARQL which we need later. The main library
which we use is called keras which is a high-level deep learning library.

Our �rst task in EL pipeline is to recognize which entity mentions we should disambiguate
at all. Thus, our �rst simplistic approach was to use IOB scheme described in section 3.5.1
and tag the input text.

Our baseline model consisted of untrained 100-dimensional word embeddings, one layer
with 100 classic RNN units and an output layer with 3 neurons where each corresponded to
one of the IOB tags. The activation function was softmax, starting learning rate was default
0.001 which was adapted during the training by the rmsprop optimizer. Furthermore, we
clipped the gradients at the value of 5. The objective function was categorical cross entropy.
The training was done one sentence by sentence as a natural solution of di�erent sentence
lengths. Additionally, we used early stopping during our training to reduce the over�tting.

Throughout the experiments with neural networks in NER, we incrementally expanded
this baseline model and observed the changes in the results. In the following table, we can
see the performance of our baseline model.

Model Precision Recall F1
EMB(100) + RNN(100) 72.79% 74.76% 73.76%

Table 5.1: Baseline RNN model with IOB tags
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These results looked promising, and we believed that adding additional layers, switching
RNN units for GRUs or LSTMs and using pre-trained embeddings would improve the current
results. Even though the sole IOB tags would be su�cient for the continuation of our EL
model, we decided to switch to the same tagging model which was used in the original
CoNLL2003 task so that the result of our system would be comparable. The following table
shows the comparison o the results of the models labelled by sole IOB tags (I, O, B) and
CoNLL tags (I-PER, I-LOC, I-ORG, I-MISC, B-PER, B-LOC, B-ORG, B-MISC, O).

Model Precision Recall F1
EMB(100) + RNN(100) (IOB) 72.79% 74.76% 73.76%

EMB(100) + RNN(100) (CoNLL) 63.35% 48.97% 55.24%

Table 5.2: Baseline RNN model results with a di�erent tag scheme

The decision to change the tagging scheme made the sequence tagging much more di�cult
because now instead of three tags we had nine. With more di�cult task, the scores in
evaluation metrics naturally dropped. We decided to update our network by using more
complex GRU units instead of classic RNN units.

Model Precision Recall F1
emb(100) + GRU(100) 62.64% 54.03% 58.02%

Table 5.3: Baseline GRU model

We had observed a slight improvement which is not surprising since GRUs are a general
version of RNNs. Afterwards, we decided to use LSTMs to see whether there would be the
di�erence in performance between GRUs and LSTMs which was discussed in section 4.1.5.2

Model Precision Recall F1
EMB(100) + LSTM(100) 60.85% 58.42% 59.61%

Table 5.4: Baseline LSTM model

We observed that there is no clear winner regarding our evaluation metrics which supports
what was said in theoretical section 4.1.5.2. We stopped experimenting with simple RNN
units and continued with a comparison of stronger GRUs and LSTMs while we kept changing
our model. Next update which we made was adding a convolutional layer with 64 �lters and
the �lter length of 5 words.

Model Precision Recall F1
EMB(100) + CNN(64,5) + GRU(100) 65.07% 62.04% 63.52%

EMB(100) + CNN(64,5) + LSTM(100) 63.79% 61.27% 62.5%

Table 5.5: Models utilizing CNNs

We noticed that GRUs got better results than LSTMs this time. We assumed that it was
because of GRUs having fewer parameters to train resulting in quicker training. We decided
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to add a bidirectional layer which is used in the most of the NED neural approaches. Thanks
to the bidirectional layers the current state in the network can reach both the past input but
also the future input information as we pass sentence in left-to-right and right-to-left word
order.

Model Precision Recall F1
EMB(100) + CNN(64,5) + BGRU(100) 64.61% 58.97% 61.66%

EMB(100) + CNN(64,5) + BLSTM(100) 66.94% 64.08% 65.48%

Table 5.6: Models utilizing bidirectional layer

Additional GRU layer did not improve the performance of the current model. On the
other hand, we observed opposite e�ect after adding additional LSTM layer. We supposed
that higher modelling power of LSTMs was the reason why the di�erence in this particular
experiment occurred. Moreover, we think that this might be the reason why bidirectional
lstms are used in most state-of-the-art approaches while bidirectional grus not.

In the next update, we applied dropout layer with the 50% dropout probability to reduce
the over�tting of our model. Besides that, we noticed that training slowed down after using
bidirectional layer so we thought dropout would speed up the training.

Model Precision Recall F1
EMB(100) + CNN(64,5) + DROP(0.5) + BGRU(100) 67.32% 66.14% 66.73%

EMB(100) + CNN(64,5) + DROP(0.5) + BLSTM(100) 66.01% 58.08% 61.79%

Table 5.7: Models after applying dropout

The next update was to use pre-trained embeddings. We used 100-dimensional Skip-
gram embeddings provided by Lample et al. [36] that �tted to our previously designed model
without a need to change it.

Model Precision Recall F1
SKIP(100) + CNN(64,5) + DROP(0.5) + BGRU(100) 67.44% 70.56% 68.97%

SKIP(100) + CNN(64,5) + DROP(0.5) + BLSTM(100) 64.52% 61.66% 63.06%

Table 5.8: Models after adding pre-trained embeddings

This time we tried changing the number of convolutional �lters and changing the number
of neurons in recurrent layers to see whether the problem was in chosen hyperparameters.

Model Precision Recall F1
SKIP(100) + CNN(32,5) + DROP(0.5) + BGRU(100) 62.13% 59.13% 60.59%

SKIP(100) + CNN(64,5) + DROP(0.5) + BGRU(100) 66.82% 63.5% 65.12%

SKIP(100) + CNN(128,5) + DROP(0.5) +BLSTM(200) 63.88% 57.55% 60.55%

SKIP(100) + CNN(64,5) + DROP(0.5) + BLSTM(200) 64.52% 61.66% 63.06%

Table 5.9: Models with varIous hyperparameters
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After no further progress in performance together with limited computational and time
resources, we decided to use an existing NER model in order to progress with EL task. The
reason behind our choice was that NED is highly dependent on the results of the previous
parts in EL pipeline. We used implementation of a neural model described by Lample et
al. [36] which reached F1 score 90.94% on AIDA CoNLL-YAGO dataset using previously
examined embeddings, CNNs and BLSTMs. The �nal comparison of our architectures and
results can be seen in the following table.

Model Precision Recall F1
EMB(100) + RNN(100) 63.35% 48.98% 55.24%

EMB(100) + GRU(100) 62.64% 54.03% 58.02%

EMB(100) + CNN(64,5) + GRU(100) 65.07% 62.04% 63.52%

EMB(100) + CNN(64,5) + BGRU(100) 66.61% 58.97% 61.66%

EMB(100) + CNN(64,5) + DROP(0.5) + BGRU(100) 67.32% 66.14% 66.73%

SKIP(100) + CNN(64,5) + DROP(0.5) + BGRU(100) 66.44% 70.56% 68.97%

SKIP(100) + CNN(32,3)+ DROP(0.5) + BGRU(100) 62.13% 59.13% 60.59%

EMB(100) + LSTM(100) 60.85% 58.42% 59.61%

EMB(100) + CNN(64,5) + LSTM(100) 63.79% 61.27% 62.50%

EMB(100) + CNN(64,5) + BLSTM(100) 66.94% 64.08% 65.48%

EMB(100) + CNN(64,5) + DROP (0.5) + BLSTM(100) 66.01% 58.08% 61.79%

SKIP(100) + CNN(64,5) + DROP (0.5) + BLSTM(100) 60.89% 59.65% 60.26%

SKIP(100) + CNN(128,5) + DROP(0.5) +BLSTM(200) 63.88% 57.55% 60.55%

SKIP(100) + CNN(64,5) + DROP(0.5) + BLSTM(200) 64.52% 61.66% 63.06%

Table 5.10: Results of all models

In the end, our best neural model reached 68.97% F1 score while the neural model that
we decided to use reached 90.94% F1 score. The are many possible factors that in�uenced the
performance of our models. We argue that one of the possible reasons for such di�erent results
using almost similar techniques was our choice to train model sentence by sentence. This
straightforward approach to solve the problem of various sentence length probably slowed
down training too much. The other approach that could have selected was padding sentences
to the same length so that we could choose the batch size. However, the disadvantage of the
padding is bigger memory consumption since there would be many sentences with additional
zeros inside.

5.2 Candidate Generation

As was stated in section 3.1, we use label-lookup for candidate generation part of EL pipeline.
Label-lookup is inspired by CrossWiki Search [3, 59] which uses a dictionary1 where each
entry consists of a string s, Wikipedia URL u and a probability P (U = u|S = s) of the
URL u given the string s. Based on this data, label-lookup generates entity candidates
given a string, and conditional probabilities are used for scoring. The second idea used in

1
<http://nlp.stanford.edu/data/crosswikis-data.tar.bz2/dictionary.bz2>
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label-lookup is FuzzySearch [70] which aims to �nd the correct entity even if the label is
not spelt properly.

Label-lookup is utilized as a standard component of Alquist and YodaQA systems. Since
one of the objectives of our work is to create EL system that could be possibly used in
these systems, we found it reasonable to use a component of systems that we would like to
extend. Additionally, by using label-lookup, our EL system can be used on general datasets
while by using existing candidate datasets for AIDA CoNNL-YAGO would restrict us only
to the particular dataset. These are the main reasons why we opted for label-lookup instead
of using existing candidate datasets, even though the results on the AIDA CoNLL-YAGO
dataset could be possibly better with candidates created speci�cally for this dataset.

5.3 Named Entity Disambiguation

In the last part of our EL pipeline, we focused on NED. We connected all previous parts
of the system in order to get input for NED. Afterwards, we used Freebase and Microsoft
Concept Graph to generate a clarifying question to disambiguate the entities.

Firstly we selected sentences from test set which contained at least one entity with
Freebase mid. Out of 3453 sentences from the test set of AIDA CoNLL-YAGO dataset, 2464
passed through this �lter. Since our approach is based on user interaction, we had to select a
reasonable number of sentences to create sample dataset for manual evaluation of clarifying
questions. We sampled 100 sentences from 2464 possible test sentences and proceeded with
our task.

We passed selected sentences to the NER model which returned tagged sentences in one
output �le. Given pairs of untagged and tagged sentences, we started generating clarifying
questions for each pair. Untagged input sentence was passed to label-lookup which returned
possible entity candidates matched to a certain substring from given sentence. Afterwards,
we used tagged output sentence to �lter which candidates match with tagged entity mentions.

5.3.1 Freebase approach

Given a set of entity candidates for each tagged entity mention, we used Freebase to �nd
the typical features of each entity candidate. Based on this typical features, we created a
question that should theoretically help with disambiguation. In the end, we decided to use
notable_for property, which is single-valued and therefore uniquely describes what entity is
generally known for. Furthermore, we also used rdf_label property. The reason was that
over 72 million triples have this property and it provides us with a human-readable label of
our entity candidate. The whole process of generating one clarifying question is shown in
�gure 5.1.

For a simple estimation of the performance, we restricted our performance estimation
only on words that should be labelled as entity mentions. Out of such 247 entity mentions
147 were labelled by the correct entity. Therefore we estimated our accuracy as the fraction
of correctly predicted entities divided by the number of entities. This gave us the estimated
accuracy of 59.51%.
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untagged input: "ANAHEIM AT PITTSBURGH"

tagged output: "ANAHEIM__B-ORG AT__O PITTSBURGH__B-LOC"

db_ids of filtered entity candidates: ['Anaheim,_California', 'AnaheimDucks']

corresponding Freebase mappings:['m.0k9p4', 'm.0jnpc']

ground truth from AIDA CoNLL-YAGO:['m.0jnpc']

generated question where suggestions contains \textit{rdf\_label}

and value of \textit{notable\_for} property given the entity candidate

Do you mean "ANAHEIM" like:

1. Anaheim notable for City/Town/Village?

2. Anaheim Ducks notable for Professional Sports Team?

Figure 5.1: Full process of question generation

Furthermore, we analysed our approach on the three possible outcomes. The �rst out-
come is that the correct entity was among the entity candidates returned by label lookup
and the clarifying question helped to disambiguate correctly. This is the case of the question
in example 5.1. In this case, we observed that Freebase approach generated well-posed
question as both rdf_label and notable_for property directs us to the correct ground truth.

The second outcome is that the correct entity is among the entity candidates returned
by label-lookup, but the question could not distinguish entity candidates well enough. This
is the case shown in �gure 5.2.

input sentence: The Wallabies ran in five tries with

Campese , who has retired from test rugby after...

['David_Campese', 'Terry_Campese']

['m.05djx3', 'm.07_jlc']

ground truth from AIDA CoNLL-YAGO:['m.05djx3']

Do you mean "Campese" like:

1. David Campese notable for Athlete

2. Terry Campese notable for Rugby Player

Figure 5.2: Freebase approach on the second type of outcome

On the contrary with the previous outcome, in this case, Freebase approach was not
su�cient. The �rst name which was not present in the original sentence was the only
di�erence in rdf_label. More importantly, notable_for values athlete and rugby player told
us that the person was known for a sport which was not discriminative enough.

The last possible outcome is when the correct entity is not in the candidate entities
at all. This can be seen in the �rst example where there was no candidate for recognized
mention Pittsburgh. However this case cannot be solved in NED part but rather in the
previous candidate generation part, so we disregard it in the evaluation from the point of
NED approach.
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5.3.2 Microsoft Concept Graph Approach

Instead of using Freebase for �nding the typical property of entity candidate we tried to
use Microsoft Concept Graph [68, 10] for question generation while we still keep freebase
rdf_label. The main purpose was to �nd out whether MCG can return better representative
properties then freebase. We took into account only the �rst two possible outcomes which
can be solved by NED part and compared the Microsoft Concept Graph based question and
freebase based question.

In the �rst case, given the same example as in Freebase approach, the second approach
yielded the following question.

Do you mean "ANAHEIM" like:

1. "Anaheim, California" with concept "-"

2. "Anaheim Ducks" with concept "team"

Figure 5.3: Microsoft Concept Graph approach on the �rst type of outcome

We observed that MCG did not return any concept for Anaheim. This was not the only
case when MCG did not return concept given candidate. In fact, most of the candidates were
without the concepts, which is mainly because MCG matches concept based on our entered
entity label while freebase approach matches the property by unique mid. Furthermore,
in the case where the concept was returned, it generally carrying the same information as
freebase concept which can be seen in this particular case too. California as a location while
returning team concept for Anaheim Ducks

The second outcome taken in the account was when the correct entity was among the can-
didates, and we were not able to disambiguate. If we again compared the question generated
by Freebase approach 5.2 and the question generated by Microsoft Concept Graph 5.4, we
saw that the returned concepts were less descriptive than the Freebase notable_for property.

input sentence: The Wallabies ran in five tries with

Campese , who has retired from test rugby after...

Do you mean "Campese" like:

1. "David Campese" with the concept "great"

2. "Terry Campese" with the concept "player"

Figure 5.4: Microsoft Concept Graph approach on the second type of outcome

Based on our experiments with two NED approaches, we consider the Freebase approach
as a preferable choice. The reason is that the Freebase approach performed relatively well
and was able to generate well-posed questions to disambiguate entity candidates. Moreover,
the Microsoft Concept Graph approach did not help with disambiguation of cases that the
Freebase approach could not solve, which means that the second approach did not have any
additional value. We argue that this was caused by the fact that Microsoft Concept Graph
returned concept based on the textual match with entered candidate string while Freebase
was matching properties based on unique mid.
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Chapter 6

Conclusion

The aim of our project was to create entity disambiguation system based on dialogue. This
objective was motivated by the small existing number of entity disambiguation systems
based on dialogue and simultaneously by the growing number of devices that could be used
for interaction with a user.

To gain a better understanding of a complex task such as entity linking, we �rstly re-
searched current state-of-the-art methods. Afterwards, we investigated existing knowledge
bases, the ways of querying them and we also examined standard datasets for named entity
recognition and disambiguation. Furthermore, we analyzed fundamental theoretical concepts
needed for the implementation of our approach.

Based on the previous research, we proceeded with the implementation of subtasks in
entity linking namely, named entity recognition, candidate generation and named entity
disambiguation.

In named entity recognition, we followed the current trend of using neural networks for
automatic feature extraction. Even though that we experimented with techniques such as
embeddings, CNNs and BLSTMs which are used in the current state-of-the-art approaches,
we were not able to reach similar performance. We assume that the decision to train one sen-
tence at the time, which slowed convergence, together with limited computational resources
is possibly one of the reasons behind the di�erence in performance.

In the end, we decided to use existing neural model for entity recognition. This model
reached the F1 score of 90, 94% while our best model reached 68, 97%. However, despite
such di�erence in performance, we were still able to observe the e�ect of individual changes
in model architecture while the most signi�cant boost in performance was seen after adding
pre-trained embeddings and bidirectional layer.

After using existing label-lookup for candidate generation instead of opting for existing
entity candidate datasets, we �nally moved to the disambiguation part. In this part, we
generated clarifying questions given a set of candidate entities. We used two approaches,
the �rst one based on Freebase and the second one using Microsoft Concept Graph. By
combining all previous subtasks, we achieved the main objective of our work, which was to
implement entity linking and disambiguation system based on dialogue.

During the evaluation of generated questions, we noticed that one of the limitations of our
approach is disambiguating model with relatively similar concepts as both Freebase approach

35



CHAPTER 6. CONCLUSION

and Microsoft Concept Graph approach struggled with �nding discriminative properties.
Moreover, we consider the necessity of manually checking the generated questions as another
limiting factor of the possible training.

If we compare our estimated accuracy of 59.51% with the state-of-the-art accuracies which
exceed 90% we see that the existing approaches outperform our dialogue-based approach.
On the other hand, we argue that there is a lot of space for possible improvements of dialogue
based linking systems as they are not thoroughly explored.

6.1 Future Work

In our particular case, the possible improvements can be aimed at each subtask of the entity
linking pipeline. Based on the results obtained during the evaluation of our system, we
would like to target the candidate generation step since we think that it would make the
most notable change in overall performance of our approach. Another possible future work
is creating voice interface instead of the current textual one. Last but not least future work
is the integration of our entity disambiguation system into the existing Alquist chatbot.
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Appendix A

CD/DVD Contents

This chapter contains the list of �les that are on the enclosed disk.

/readme.txt Readme �le with the instructions.
/src.zip Archive with the source codes of EL system.
/thesis.pdf Thesis in PDF format.
/thesis_src.zip Archive with source codes the thesis.
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